Eerie image shows spectacular aftermath of a large star’s death
The aftermath of a large star’s explosive death is seen in an image released on Monday by the European Southern Observatory, showing immense filaments of brightly shining gas that was blasted into space during the supernova.
Before exploding at the end of its life cycle, the star is believed to have had a mass at least eight times greater than our sun. It was located in our Milky Way galaxy about 800 light years from Earth in the direction of the constellation Vela. A light year is the distance light travels in a year, 5.9 trillion miles (9.5 trillion km).
The eerie image shows clouds of gas that look like pink and orange tendrils in the filters used by the astronomers, covering an expanse roughly 600 times larger than our solar system.
In this 554-million-pixel image, we get an extremely detailed view of the Vela supernova remnant, named after the southern constellation Vela (The Sails). You could fit nine full Moons in this entire image, and the whole cloud is even larger. This dramatic supernova remnant is one of the closest known to us.
“The filamentary structure is the gas that was ejected from the supernova explosion, which created this nebula. We see the inside material of a star as it expands into space. When there are denser parts, some of the supernova material shocks with the surrounding gas and creates some of the filamentary structure,” said Bruno Leibundgut, an astronomer affiliated with the European Southern Observatory (ESO).
The image shows the supernova remnants about 11,000 years after the explosion, Leibundgut said.
“Most of the material that shines is due to hydrogen atoms that are excited. The beauty of such images is that we can directly see what material was inside a star,” Leibundgut added. “The material that has been built up over many millions of years is now exposed and will cool down over millions of years until it eventually will form new stars. These supernovae produce many elements – calcium or iron – which we carry in our own bodies. This is a spectacular part of the path in the evolution of stars.”
The star itself has been reduced in the aftermath of the supernova to an incredibly dense spinning object called a pulsar. A pulsar is a type of neutron star – one of the most compact celestial objects known to exist. This one rotates 10 times per second.
This image is a mosaic of observations taken with the wide-field camera OmegaCAM at the VLT Survey Telescope (VST), hosted at ESO’s Paranal Observatory in Chile. The 268-million-pixel camera can take images through several filters that let through light of different colours. In this particular image of the Vela remnant, four different filters were used, represented here by a combination of magenta, blue, green and red.
The VST is owned by The National Institute for Astrophysics in Italy, INAF, and with its 2.6-metre mirror it is one of the largest telescopes dedicated to surveying the night sky in visible light. This image is an example from such a survey: the VST Photometric Hα Survey of the Southern Galactic Plane and Bulge (VPHAS+). For over seven years, this survey has mapped a considerable portion of our home galaxy, allowing astronomers to better understand how stars form, evolve and eventually die. The data for the image was collected from 2013 to 2016, the ESO said. (ESO/Reuters)
You must be logged in to post a comment.